久久99久久99精品免观看粉嫩,婷婷五月天激情四射久久精品,日韩人妻精品小说,丰满熟妇无码视频

供求商機
您現(xiàn)在的位置:首頁 > 供求商機 > 石墨烯 英國Ossila石墨烯氧化物E881 進口石墨烯氧化物E882

石墨烯 英國Ossila石墨烯氧化物E881 進口石墨烯氧化物E882

石墨烯 英國Ossila石墨烯氧化物E881 進口石墨烯氧化物E882
點擊放大
供應數(shù)量:
2293
發(fā)布日期:
2025/1/7
有效日期:
2025/7/7
原 產(chǎn) 地:
已獲點擊:
2293
產(chǎn)品報價:
  [詳細資料]

只用于動物實驗研究等

Graphene Oxide Powders and Solutions

Graphene oxide is one of the most popular 2D materials available. This is due to the wide range of fields that it can be applied to. It has a distinct advantage over other 2d materials (such as graphene), as it is easily dispersed within solution; allowing for processing at high concentrations. This has opened it up for use in applications such as optical coatings, transparent conductors, thin-film batteries, chemical resistant coatings, water purification, and many more.

Ossila have two types of graphene oxide powders available, with flake sizes between 1-5um and 1-50um. In addition, we also offer pre-dispersed graphene oxide solutions for simple instant use.

Graphene Oxide Powder

Graphene Oxide Powder StructureGraphene Oxide Powder XRD
  • List of products
  • What is graphene oxide?
  • Dispersion guides
  • Technical data and images
  • Publications
 

石墨烯 英國Ossila石墨烯氧化物E881 進口石墨烯氧化物E882

Product List

Graphene Oxide Powders

Product codeM881M882
Flake Size1-5 μm1-50 μm
Flake Thickness0.8-1.2 nm0.8-1.2 nm
Single layer ratio>99%>99%
Purity>99%>99%
Packaging InformationLight resistant bottleLight resistant bottle

Graphene Oxide Solutions

Product codeM883M884M885M886
Solution Volume100ml100ml100ml100ml
Concentration5 mg.ml-10.5 mg.ml-15 mg.ml-10.5 mg.ml-1
SolventsWater:IPAWater:IPAWater:IPAWater:IPA
Flake Sizes1-5 μm1-5 μm1-50 μm1-50 μm
Packaging Information4 x 25 ml bottles4 x 25 ml bottles4 x 25 ml bottles4 x 25 ml bottles

石墨烯 英國Ossila石墨烯氧化物E881 進口石墨烯氧化物E882

What Graphene Oxide is

Graphene oxide (GO), also referred to as graphite/graphitic oxide, is obtained by treating graphite with oxidisers, and results in a compound of carbon, oxygen, and hydrogen in variable ratios.

The structure and properties of GO are much dependent on the particular synthesis method and degree of oxidation. With buckled layers and an interlayer spacing almost two times larger (~0.7 nm) than that of graphite,  it typically still preserves the layer structure of the parent graphite.

GO absorbs moisture proportionally to humidity and swells in liquid water. GO membranes are vacuum-tight and impermeable to nitrogen and oxygen, but permeable to water vapours. The ability to absorb water by GO depends on the particular synthesis method and also shows a strong temperature dependence.

GO is considered as an electrical insulator for the disruption of its sp2 bonding networks. However, by manipulating the content of oxygen-containing groups through either chemical or physical reduction methods, the electrical and optical properties of GO can be dynamically tuned. To increase the conductivity, oxygen groups are removed by reduction reactions to reinstall the delocalised hexagonal lattice structure. One of the advantages GO has over graphene is that it can be easily dispersed in water and other polar organic solvents. In this way, GO can be dispersed in a solvent and reduced in situ, resulting in potentially monodispersed graphene particles.

Due to its unique structure, GO can be functionalised in many ways for desired applications, such as optoelectronics, drug delivery, chemical sensors, membrane filtration, flexible electronics, solar cells and more.

GO was first synthesised by Brodie (1859), followed by Hummers' Method (1957), and later on by Staudenmaier and Hofmann methods. Graphite (graphene) oxide has also been prepared by using a "bottom-up" synthesis method (Tang-Lau method) where glucose is the sole starting material. The Tang-Lau method is considered to be easier, cheaper, safer and more environmentally-friendly. The thickness, ranging from monolayer to multilayers, can by adjusted using the Tang-Lau process. The effectiveness of an oxidation process is often evaluated by the carbon/oxygen ratios of the GO.

Dispersion Guides

Due to the presence of oxygen and hydroxide groups, the dispersibility of this material is significantly better than other 2d materials (such as graphene). High concentrations of GO can be dispersed in polar solvents, such as water. At Ossila, we have found that the most stable solutions can be produced using the following recipe:

  • Weigh out desired amount of material, this can go up to at least 5 mg.ml-1.
  • Add 1:1 ratio of deionized water to isopropyl alcohol.
  • Shake vigorously to break up material.
  • A short treatment in an ultrasonic bath will rapidly disperse the material.
  • For larger flakes, use a mechanical agitator instead (as sonication may damage the flakes).

Technical Data

General Information

CAS number7782-42-5 (graphite)
Chemical formulaCxHyOz
Recommended SolventsH2O, DMF, IPA
Synonyms
  • Single layer GO
  • GO
Classification / Family

2D semiconducting materials, Carbon nanomaterials, Graphene, Organic electronics

Colour

Black/Brown Sheets/Powder

 

Product Images

Monolayer Graphene OxideGraphene Oxide SEMSEM Images of flakes on silicon

 

想了解更詳細的產(chǎn)品信息,填寫下表直接與我們聯(lián)系:

留言框

  • 產(chǎn)品:

  • 您的單位:

  • 您的姓名:

  • 聯(lián)系電話:

  • 常用郵箱:

  • 省份:

  • 詳細地址:

  • 補充說明:

  • 驗證碼:

    請輸入計算結(jié)果(填寫阿拉伯數(shù)字),如:三加四=7
深圳市澤拓生物科技有限公司 專業(yè)提供:大小鼠解剖器械包,瑞士Sipel真空泵,美國EMS電鏡耗材
深圳市澤拓生物科技有限公司版權(quán)所有   |   技術(shù)支持:化工儀器網(wǎng)
聯(lián)系電話:0755-23003036   傳真:0755-23003036-807 GoogleSitemap 備案號:粵ICP備17105262號  管理登陸
在線客服
深夜一级| 免费91av| 国产精品一区二| 99久久夜色精品国产亚洲| 国产精品md| 狠狠综合久久一区二区残暴 | 日韩欧美不卡色| 一区二区亚洲激情| 中文AV无码人妻一区二区三区| 国内精品无码一区二区| 亚州精品无码国产一级| 高清无码中文字幕手机在线| 色天使亚图亚洲视频免费| 免费无码在线观看| 一本大道精品视频| av黄色片| 婷网综合久一点在线播放| 日本久艹视频| 91日韩高清| 午夜试看性视频| 人妻精品无码一区二区三区百花| 日本黄色真人91| 久久国产欧美另类久久久| 青青操日韩| 国产91熟女高潮一区| 国产一级黄片边梅| 亚洲图片制服自拍小说图片区| 白水县| 91久久久精品人妻| 国产AV巨制丝袜秘书| 老熟妇激情| 超碰在人人干人人| 粗大挺进尤物人妻中文字幕| 人大芸窗| 日本尤物在线色播放| 97国产成人人人视频| 好吊丝这里有精品| 国产黃色AAA片| 国产a级久久久久久久| 青草.婷婷b| 最新国产AⅤ精品无码|